skip to main content


Search for: All records

Creators/Authors contains: "Woller, Isabel M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hyperspectral fluorescence imaging is widely used when multiple fluorescent probes with close emission peaks are required. In particular, Fourier transform imaging spectroscopy (FTIS) provides unrivaled spectral resolution; however, the imaging throughput is very low due to the amount of interferogram sampling required. In this work, we apply deep learning to FTIS and show that the interferogram sampling can be drastically reduced by an order of magnitude without noticeable degradation in the image quality. For the demonstration, we use bovine pulmonary artery endothelial cells stained with three fluorescent dyes and 10 types of fluorescent beads with close emission peaks. Further, we show that the deep learning approach is more robust to the translation stage error and environmental vibrations. Thereby, the He-Ne correction, which is typically required for FTIS, can be bypassed, thus reducing the cost, size, and complexity of the FTIS system. Finally, we construct neural network models using Hyperband, an automatic hyperparameter selection algorithm, and compare the performance with our manually-optimized model. 
    more » « less
  2. null (Ed.)
    Hyperspectral three-dimensional (3D) imaging can provide both 3D structural and functional information of a specimen. The imaging throughput is typically very low due to the requirement of scanning mechanisms for different depths and wavelengths. Here we demonstrate hyperspectral 3D imaging using Snapshot projection optical tomography (SPOT) and Fourier-transform spectroscopy (FTS). SPOT allows us to instantaneously acquire the projection images corresponding to different viewing angles, while FTS allows us to perform hyperspectral imaging at high spectral resolution. Using fluorescent beads and sunflower pollens, we demonstrate the imaging performance of the developed system. 
    more » « less